Архив категории » ОМАГНИЧЕННАЯ ВОДА «

20.06.2012 | Автор:

Вода выталкивается из магнитного поля. Схема опыта, поставленного Ш. Гуи, изображена на рис. 4. На тонкой нити подвешена маленькая запаянная ампула, внутри которой находится вещество (например,

Рис. ч. Схема измерения маг­нитной восприимчивости

N

Вода). Когда ампулу вводят в магнитное поле между полюсами N и S, то по изменению силы натяжения нити можно установить, что ампула из поля либо выталкивается, либо, наоборот, втягивается в него. Ампула с водой из поля выталкивается, так же как и многие другие вещества, например медь, свинец, стек­ло,— они называются диамагнитными. Другие вещества (алюминий, хром, воздух) в магнитное поле втяги­ваются, они называются парамагнитными. Для коли­чественной характеристики этого свойства применяют две величины: магнитную восприимчивость х и магнит­ную проницаемость ц, причем ц=1+х-

Для диамагнитных тел х<0 и Для парамаг­

Нитных тел х > 0 и р, > 1.

Для диа — и парамагнитных тел абсолютные значе­ния х малы: для воды при 20 °С х= — 0,72-Ю-6. По­этому значения р, близки к единице. Величина (л связы­вает два параметра поля — напряженность Н и маг­нитную индукцию В:

\и = В/Н. О

Вектор Я характеризует силу внешнего поля, век­тор В — силу поля в веществе [1]. Поскольку для воды значение р, близко к единице, для нее обе векторные величины практически равноценны; обычно указывают либо В, либо Н.

Магнитное поле в опыте Гуи создается обязательно с использованием одного остроконечного полюса. В зоне этого полюса магнитные силовые линии имеют большую густоту, там возникает большой градиент напряжен­ности grad Н. Гуи установил, что сила F\, действую­щая на испытуемое вещество, пропорциональна гради­енту напряженности:

Fi=xVH grad Н (2)

Здесь V—объем вещества.

Для малых объемов (порядка 1 см3), где нетрудно создать большую напряженность магнитного поля, Fі может составить несколько ньютонов (Н) и сравни­тельно легко измеряется в эксперименте. Для больших объемов (порядка 1 дм3) внешнее магнитное поле будет существенно меньше, меньше окажется и сила F\, составляющая доли процента от силы тяжести. Поэтому для объемов жидкости порядка кубических дециметров и выше действием силы F\ можно пренебречь.

Существует группа веществ, для которых F\ изме­ряется килоньютонами и даже меганьютонами, для них х^О и Такие вещества называются ферро­

Магнитными, к ним относятся железо, некоторые его соединения и сплавы, ряд других веществ. Для фер­ромагнитных тел формула (1) несправедлива: во внеш­нем поле Н происходит непропорциональное возра­стание В. Во внешних полях даже сравнительно низкой напряженности для ферромагнитных тел сила F{ суще­ственно выше силы тяжести.

Следовательно, если в воде содержатся ферромаг­нитные частицы (вода из ржавой трубы), то магнит­ным полем можно ее очистить от примесей. Этот прин­цип используется в работе специальных аппаратов — магнитных сепараторов и магнитных фильтров-сгусти­телей. Под действием магнитного поля ферромагнитные частицы концентрируются вблизи полюсов магнитов, тогда как вода, действие силы F, на которую пренеб­режимо мало, сохраняет заданную траекторию своего движения.

Магнитное поле воздействует не только на воду как целое, но и на отдельные ионы, например на ка­тионы Н + . При рН = 7 концентрация Н+ составляет 1СГ7 ион/дм3, значит, в 1 см3 воды содержится 10й ка­тионов Н + . Ион Н+ представляет собой ядро атома водорода — протон, характеризующийся собственным магнитным моментом — спином. Спины ионов Н+ вза — имодеиствуют с внешним магнитным полем. При опре­деленных условиях нарушается пропорциональность, выражаемая формулой (1), что можно зафиксировать посредством точной измерительной аппаратуры. На­пример, исследуемый образец воды (или другого ве­щества) помещается в однородное поле Н\ постоянного магнита. Этот образец располагается одновременно в двух катушках. По одной катушке подается ток от высокочастотного генератора, что создает в зоне образ­ца переменное магнитное поле #2, причем Н2 перпен­дикулярно Н\. Изменяя частоту генератора, достигают резонанса, о чем судят по резкому возрастанию тока во второй катушке, соединенной с высокочастотным приемным устройством. Таков принцип метода ЯМР — ядерного магнитного резонанса. Метод ЯМР находит практическое применение для идентификации хими­ческих веществ, для определения количества свобод­ной воды, в качестве бесконтактных расходомеров и т. д.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

Расскажем о процессе, который изучали более всего и о котором, естественно, было более всего споров. Сейчас, когда у нас есть хотя бы приблизительное представление о механизме магнитной обработки, не­давние дискуссии выглядят неоправданно острыми, хотя и сейчас далеко не все ясно. А даже десять лет тому назад противоречия, казалось, вели прямо в тупик. Процесс, о котором идет речь,— двуединый, его можно рассматривать как два самостоятельных процесса: растворение и кристаллизацию.

Известно, что почти все неорганические вещества в большей или меньшей степени растворяются в воде. Поваренная соль (хлорид натрия) при 20 °С имеет предельную растворимость 36 г/100 см3. Это значит, что в данном объеме воды первые порции соли (1—2 г) растворяются довольно быстро (несколько секунд), последующие порции — медленнее и только после пере­мешивания. Растворение порций свыше 20 г протекает в течение десятков секунд. Добавление последнего грамма делает раствор насыщенным, соль более не растворяется, следующие порции остаются в виде твердой фазы — это уже пересыщенный раствор.

Если соль растворить в «омагниченной» воде или обрабатывать магнитным полем суспензию с неболь­шим количеством соли, то растворение завершается быстрее: вместо десяти секунд — пять. Для более рас­творимых солей (например, сульфата магния) скорость растворения изменяется в десятки раз.

В обиходе нередко говорят, что магнитное поле влияет на растворимость солей. Требуется уточнение: изменяется кинетика растворения, скорость процесса становится больше или меньше, а предельное значе­ние растворимости (для хлорида натрия — 36 г) остается неизменным.

Как мы это объясним? При обработке воды имею­щиеся в ней «тонкие» ионы попадают в клетки-полости, освобождаясь от «шубы» из молекул НгО, а освобо­дившиеся мономерные молекулы воды активно взаимо­действуют с поверхностью введенного твердого веще­ства. При обработке суспензии, кроме того, добавля­ются мономерные молекулы Н20, освободившиеся из «шуб» ионов, встроившихся в кристаллическую решетку частиц твердой фазы. Таким образом, растворение сопровождается кристаллизацией. Если обрабатывают суспензию, концентрация которой близка к насыщен­ному раствору, кристаллизация становится все более заметной, значит, эффект магнитной обработки (про­являющийся как увеличение скорости растворения) постепенно уменьшается. При обработке пересыщен­ного раствора заметна только кристаллизация. Иногда считают, что здесь эффект магнитной обработки изме­нил знак, а на самом деле вместо двух противополож­ных эффектов остался один. В пересыщенном растворе нет свободных клеток-полостей, нет и первого эффекта.

Итак, магнитная обработка пересыщенного раство­ра приводит к ускорению кристаллизации, это назы­вается также снятием пересыщения.

Особенно заметно влияние магнитного поля на рас­творение малорастворимых солей. Так, предельная рас­творимость гипса в воде — 0,2 г. Если в воду ввести всего 0,1 г гипса, то растворение будет идти медленно (ведь это все равно, что для хлорида натрия 20 г). В воде, прошедшей магнитную обработку, то же коли­чество гипса растворится за несколько секунд, и этот эффект имеет большое практическое значение.

Исследованию действия магнитного поля на неодно­родную систему гипс — вода посвящено несколько десятков работ. Не у всех наблюдался положительный результат. Не было, например, никакого эффекта; когда постоянным магнитом обрабатывали неподвиж­ную воду. В этих условиях сила Лоренца равна нулю, и теперь отсутствие эффекта мы считаем вполне законо­мерным, а в свое время этот результат вызвал бурную полемику.

В движущейся суспензии или в переменном маг­нитном поле эффект тоже бывает не всегда. Так, в обла­сти «оптимальных» индукций скорость растворения гипса уменьшается, при несколько больших индукциях отмечается отсутствие эффекта, а при В= 1,6 Тл наблю­дается увеличение скорости растворения гипса. Это ти­пичная зависимость с экстремумом, с которой мы встречались неоднократно и которую объясняли в раз­деле 3.6. Поэтому отсутствие эффекта при опреде­ленных индукциях более не выглядит странным. Но вот как отнестись к тому, что в обработанной воде гипс растворяется не быстрее, а медленнее? Тут надо вспом­нить, что гипс, как и некоторые другие сульфаты, имеет отрицательный температурный коэффициент растворимости (растворимость при нагревании умень­шается). Тот же гипс в фосфорной кислоте характе­ризуется положительным температурным коэффициен­том растворимости: его растворимость при нагревании увеличивается. Вполне естественно, что в этом случае магнитная обработка с «оптимальной» индукцией при­водит к увеличению скорости растворения гипса. В системе гипс—вода эффект магнитной обработки при нормальной температуре проявляется ярче, чем при повышенной, а в системе гипс—фосфорная кислота картина обратная.

Растворимость гипса в растворах фосфорной кис­лоты зависит от ее концентрации и достигает мак­симума при 30 % Н3РО4. Именно при этих условиях отмечается наибольший эффект магнитной обра­ботки — скорость растворения увеличивается на 30 %,

В производстве фосфорной кислоты образуется фосфогипс — соединение гипса с кремнефторидом натрия. Растворимость кремнефторида натрия в фос форной кислоте также зависит от ее концентрации максимум — при 5 % Н3РО4. И именно при такой кон­центрации фосфорной кислоты наиболее заметен эффект магнитной обработки — скорость растворения увеличивается на 20 %.

Фосфогипс в зависимости от ряда условий может иметь разную растворимость в фосфорной кислоте. Если взять образец с высокой растворимостью, то он будет быстрее растворяться в обработанной магнит­ным полем кислоте. Но если взять образец с низкой растворимостью, то он станет медленнее растворяться в обработанной кислоте.

Эти экспериментальные результаты соответствуют найденному Н. А. Глебовым ряду соединений кальция, для которых рассматриваемый эффект магнитной обра­ботки убывает в такой последовательности: Са (ОН)г> > CaS04> CaF2> СаСОз. В такой же последователь­ности изменяется и растворимость этих веществ.

Если суммировать все эти факты, то можно ска­зать, что магнитная обработка не изменяет предель­ную растворимость веществ и механизм растворения, а влияет на скорость процесса тем, что создает дополни­тельное количество активных мономерных молекул воды.

Следствием этого является ускоренное растворение солей, в частности тех, что отложились в виде «инкру­стаций» на стенках труб, по которым протекает омагни — ченная вода. Трубы становятся чище. В 1945 г. бель­гийский инженер Т. Вермайрен взял патент на примене­ние магнитной обработки воды для очистки стенок труб. Сейчас таким способом очищают трубы разно­образных теплообменных аппаратов, а также различ­ные технологические коммуникации.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

Вы уже прочли, как применяется магнитная обра­ботка для улучшения качества изделий из различных вяжущих материалов; используются два эффекта: ускорение растворения на первой стадии твердения и замедление кристаллизации на последних стадиях. Наиболее широкое применение магнитная обработка нашла в производстве изделий из бетона: имеются сообщения о внедрении или хотя бы промышленных испытаниях в Алма-Ате, Волгограде, Ворошиловграде, Казани, Киеве, Краснодаре, Минске, Одессе, Перми, Риге, Саратове, Ташкенте, Харькове. Конечно, резуль­таты не всюду одинаковы. На одной из конференций, например, докладывали, что при одном и том же вя­жущем, затворенном омагниченной водой из водо­провода, в Таллинне скорость процесса была на 10 % выше, чем на обычной воде, а в Риге — уже на 30 % выше. Очевидно, ионный состав воды в разных местно­стях различный, разными должны быть и параметры магнитной обработки (а применяли одинаковые).

Для теоретического прогноза эффективности метода магнитной обработки надо, по-видимому, знать, сколь­ко в воде ионов «тонких» и сколько там «толстых», для этого надо располагать данными полного химического анализа. Чаще, однако, ограничиваются сведениями об общей минерализации, т. е. о суммарном количестве растворенных солей. Эти цифры интересны сами по себе, и мы приведем данные об общей минерализации некото­рых рек страны (г/м3): Нева—49, Енисей — 104, Кубань — 195, Днепр — 287, Москва — 358, Волга — 458, Дон — 586, Зеравшан — 650, Эмба — 1640.

Опыт показывает, что оптимальный режим магнит­ной обработки воды реки Невы составляет: индукция 0,06 Тл, число реверсов — 2, для воды Днепра — ин­дукция 0,09 Тл, число реверсов — 4. Для сильно мине­рализированной морской воды число реверсов рекомен­дуют увеличивать до 8—12 при индукции 0,15—0,20 Тл. Еще раз подчеркнем, что общая минерализация не полностью определяет режимы обработки, требуется знать ионный состав воды.

Замедление кристаллизации используют для снятия пересыщения в суспензии фосфорная кислота — гипс, когда после магнитной обработки кристаллы гипса растут медленнее и получаются в массе более однород­ными. Поэтому возрастает скорость их последующего фильтрования, когда эти кристаллы отделяют от кис­лоты. Аналогично добиваются укрупнения кристаллов сульфата аммония в коксохимических производствах, но тут преследуют иную цель: крупные кристаллы хуже слеживаются. В солевых производствах (напри­мер, хлорида калия) подобным приемом достигают укрупнения кристаллов с новой целью — для умень­шения запыленности технологического процесса.

Замедление кристаллизации гипса используют также при приготовлении форм для фарфоровой и фаянсовой посуды. Формы готовят из гипсового вяжу­щего, которое затворяют водой, прошедшей магнитную обработку. Кристаллизация начинается через 9 минут, а не через 5 минут, как на обычной воде, при этом прочность образующихся форм оказывается в 1,5 раза выше, а термостойкость — в 3 раза выше. Такие высо­кие эксплуатационные показатели позволяют приме­нять в производстве посуды автоматизированные ли­нии, где требования к качеству форм существенно выше, чем при старой технологии.

Интересно техническое решение с использованием магнитной обработки воды в производстве шарикопод­шипников. Закалка подшипников качения при терми­ческой обработке производится погружением в раствор соды. Если раствор подвергнуть магнитной обработке, то на поверхности металла кристаллы соды отклады­ваются сплошным ровным слоем, что обеспечивает высокое качество закалки всей поверхности подшип­ника. Из обычного раствора пленка соды не получается сплошной, твердость шарика в участках разрыва сплошности оказывается меньшей. Причина появления сплошного ровного слоя — замедление кристаллизации и образование мелких кристаллов соды.

Ускорение процесса кристаллизации посредством магнитной обработки используют в пищевой промыш­ленности. Так, при приготовлении мороженого готовая для фризерования смесь затвердевает быстрее, что позволяет повысить производительность фризера Вкусовые качества мороженого при этом не изменяются

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

Мы уже знаем, что каждый ион в растворе имеет гидратную оболочку. Хорошо бы знать, сколько молекул Н20 способен координировать вокруг себя каждый ион (такое число п называют числом гидратации). Так как ни ионы, ни отдельные молекулы Н20 нельзя увидеть невооруженным глазом, то придуманы способы косвен­ного определения п; таких способов в настоящее время известно свыше двадцати. Производят измерения каких-либо свойств растворов — плотности, поверхно­стного натяжения, электрической проводимости, ско­рости звука и др.— и по специально выведенным мате­матическим формулам рассчитывают число гидратации.

Числа гидратации, определенные разными спосо­бами, существенно отличаются друг от друга — иногда вдвое, а иногда и на два порядка. Разными оказы­ваются даже основные зависимости, так, значения п, полученные одними способами, уменьшаются с ростом температуры, а полученные другими способами — увеличиваются. Похоже, что формулы, по которым рассчитывают п, в некоторых случаях выведены при спорных допущениях. Научные дискуссии о числах гидратации продолжаются и по сей день, и это пока-

Растворы электролитов

I 40~

Растворы электролитов

І 50-

Растворы электролитов

VJ и, a. —

^0,8^ 1,0%}, 16 K.0,8 ^1,12 0.7^,08 1fi4

Г

Растворы электролитов

40

Рис. 5. Сравнение свойств растворов хлоридов щелочных металлов

£30- 54- ^ 20 % 52-

Зывает, что вода устроена гораздо сложнее, чем кажется на первый взгляд.

Посмотрим, какую «информацию к размышлению» можно извлечь из данных о свойствах растворов электролитов. На рис. 5 представлены зависимости шести свойств водных растворов солей одинаковой концентрации (1 моль/м ) от молекулярной массы М растворенного вещества. Взяты соли с общим анионом и разными катионами: хлориды лития, натрия, калия, рубидия и цезия. В этом ряду непрерывно возрастает масса соли, возрастает и радиус катионов: 0,78С <0,98<1,33< 1,49 <1,65 А.

Первый график снизу — для плотности растворов р. Плотность растворов солей больше плотности воды, так как все эти соли тяжелее воды. Плотности соли и раствора связаны линейной зависимостью, что пред­ставляется вполне естественным. Удивительно, пожа­луй, что прямая — если ее продолжить — не попадает в начало координат. Она пересекает ось абсцисс при значениях Af = 18-^20. Тут уместно вспомнить, что для воды М = 18. Значит, водный раствор соли — это механическая смесь соли и воды, а не химическое
соединение. Подобное соединение образуется, напри­мер, в 20 %-м водном растворе этилового спирта, что соответствует точке перегиба на графике рис. 1.

Следующий график для удельной электрической проводимости у. В растворах электролитов у значи­тельно выше, чем в чистой воде, так как перенос заряда осуществляется ионами. Если в 1 см3 воды содержится 10 катионов Н+, то в 1 см3 раствора (концентрацией 1 моль/кг) полностью диссоциированной соли, напри­мер хлорида натрия,— Ю20 катионов Ма + . График пред­ставляет собой ломаную линию: проводимость возра­стает при переходе от соли лития к соли калия и не изменяется при переходе от соли калия к соли цезия.

Традиционное объяснение состоит в том, что под­вижность ионов связывают с их радиусом. Так как радиус иона лития наименьший, то ион должен иметь наибольшее число гидратации п, поэтому, вероятно, подвижность столь сильно гидратированного иона ста­новится малой. Значит, и электрическая проводимость иона лития — наименьшая в данном ряду. Радиус иона натрия несколько больше, число гидратации для него немного меньше, а в результате и электри­ческая проводимость чуть выше. Рассуждая подобным образом, можно прийти к выводу о непрерывном воз­растании электрической проводимости в данном ряду растворов солей, что, однако, противоречит опыту. Поэтому традиционное объяснение постулирует одина­ковость числа п для ионов калия, рубидия и цезия. Но это противоречит данным о числах гидратации, полученных другими методами. Так, из результатов измерений скорости звука получаются следующие значения п: Li+— 4, Na+ — 6, К+— 5, Rb+ — З, Cs+ —2.

Экспериментальную зависимость, изображенную на рис. 5, можно объяснить по-иному. Учтем возмож­ность попадания ионов в вакантные полости каркаса воды. В полость ион попадает без своей гидратной оболочки, поэтому примем в расчет радиусы не гидра — тированных, а свободных ионов. Радиус свободного иона лития — наименьший в рассматриваемом ряду, он меньше эффективного радиуса полости, равного 1,40 А. Значит, этот положительно гидратированный ион станет попадать в вакантные полости каркаса, стабилизи­руясь в них. Поэтому электрическая проводимость раствора с ионами лития будет меньше, чем, например, раствора с ионами натрия, радиус которых больше, а вероятность заполнения полостей каркаса — ниже. Еще меньше вероятность заполнения полостей каркаса у ионов калия, поэтому электрическая проводимость раствора с ионами калия еще выше. А вот отрица­тельно гидратированные ионы рубидия и цезия в по­лости каркаса попадать не могут (для этого потре­буются внешние силы, например возникающие в жид­кости при ее течении под действием силы тяжести). Значит, в растворах с этими ионами нет влияния фактора заполнения полостей каркаса, электрическая проводимость останется такой же, как и в растворах с ионами калия.

Третий снизу график для вязкости v. Как и пре­дыдущий, он представляет собой ломаную линию с точкой перегиба у хлорида калия. Вязкость растворов электролитов обычно выше вязкости самой воды, поскольку молекулы НгО, составляющие гидратные оболочки ионов, создают жесткие структуры, препят­ствующие свободному перемещению соседних слоев жидкости друг относительно друга. Эта так назы­ваемая положительная вязкость в относительных вели­чинах (по отношению к вязкости чистой воды) больше единицы. Про растворы, вязкость которых меньше, чем в воде (в относительных величинах — меньше единицы), говорят, что они имеют отрицательную вязкость. Это явление невозможно объяснить без при­влечения постулата о заполнении ионами полостей каркаса воды. Положительную вязкость создают поло­жительно гидратированные ионы: попадая в полости каркаса, они стабилизируют каркас, затрудняя пере­мещение ближайших слоев жидкости. Отрицательную вязкость создают отрицательно гидратированные ионы: попадая под действием внешних сил в полости, они разрушают каркас, облегчая перемещение ближайших слоев жидкости.

Что касается поверхностного натяжения ст, то для всех пяти солей значение этой величины одинаково, так как оно определяется только анионом, а катионы на поверхностное натяжение раствора не влияют.

Но если рассматривать ряд солей с одинаковым катио­ном и разными анионами — например, фториды, хло­риды, бромиды и иодиды,— то получим ломаную линию, аналогичную нашей кривой вязкости, только с точкой перегиба у хлоридов. Это соответствует радиусам анионов: F — — 1,33, С1~ — 1,81, Вг — —1,96, I-— 2,20 А. В рассматриваемом ряду фторид-анион — положительно гидратированный, остальные — отрица­тельно гидратированные.

Диэлектрическая проницаемость є в растворах меньше, чем в воде, ибо для воды она равна 80, а для кристаллов солей — не более 20. Жесткие структуры гидратных слоев приближают растворы электролитов по упорядочению молекул НгО к твердому состоянию. В растворах с положительно гидратированными ионами лития и натрия диэлектрическая проницаемость меньше, чем в остальных растворах, следовательно, первые два раствора ближе к твердому состоянию. Это можно рассматривать как еще одно доказательство того, что ионы лития и натрия, попадая в полости каркаса, ста­билизируются в полостях и стабилизируют сам каркас. График также представляет собой ломаную линию с точкой перегиба у соли калия.

Аналогичная ломаная линия и для магнитной вос­приимчивости х — и тоже с точкой перегиба у соли калия. Значит, ион калия находится на границе между положительной и отрицательной гидратацией (при данных условиях, например при 20 °С).

Размышляя над полученной информацией, мы за­ключаем, что некоторые свойства растворов весьма чувствительны к тому, какого типа ионы в них при­сутствуют. Возникает и еще одно, довольно крамоль­ное соображение: так ли уж хорошо мы знаем воду, насколько основательны наши знания о ней и не могут ли они быть поколеблены под влиянием новых экспе­риментальных данных?

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

В средней школе учат принципам составления уравнений химических реакций. Один из основных принципов заключается в том, что в обеих частях ра­венства реакции должны участвовать одни и те же ионы. Наверное, любой выпускник школы без труда напишет и объяснит следующую реакцию:

КОН + НС1 = КС1 + Н20.

Тут щелочь взаимодействует с кислотой, образуя нейтральную соль, растворимую в воде.

Вряд ли возникнут трудности при объяснении другой реакции:

2 КОН — f — Pb (NO3) 2 = Pb (ОН) 21 +2KNO3.

Здесь щелочь взаимодействует с растворимой в воде солью, образуя нерастворимый осадок — гидрок — сид свинца.

В. И. Классен установил, что при действии магнит­ного поля последняя реакция идет по-иному: в ней участвует оксид углерода (IV), который обычно раство­рен в воде:

Со2

2КОН +Pb(N03)2 ———— >- РЬСОзі-f 2KN03-f Н20.

Из школьного курса химии известно также, что бихромат калия переходит в хромат в щелочной среде:

К2СГ2О7 -f 2КОН = 2К2Сг04 + Н20.

Бихромат переходит в хромат и без добавления щелочи, если производить магнитную обработку рас­твора — это доказал болгарский ученый Д. Ламбрев. Это можно объяснить только тем, что в обработан­ном растворе появляются ионы ОН-. Откуда же они берутся?

Вода, являясь слабым электролитом, диссоциирует на ионы:

Н20 = Н+ +ОН’.

Радиус иона Н+ составляет 1,32 А, это — «тонкий» ион, и он попадает в полости каркаса, стабилизируясь в каркасе. Радиус иона ОН — равен радиусу полости каркаса, этот ион оказывается в растворе в избытке, создавая щелочную среду. Значит, должен возрастать водородный показатель рН.

Известно более 10 работ о влиянии магнитной обра­ботки на рН растворов, но все результаты едва пре­вышают погрешности измерений и потому вызывают сомнения в достоверности. Недавно опубликованная работа Ламбрева заставляет по-новому оценить эти старые исследования.

А теперь напишем уравнение химической реакции, в котором, как будто, все правильно:

CaCi2 + Na2S04 = CaS04 +2NaCl.

Магнитная обработка исходных компонентов — растворов СаС12 и Na2S04 — приводит к замедлению кристаллизации гипса, а обработка получающейся суспензии — к ускорению. Этот необычный эффект нетрудно объяснить, если учесть, что в исходных раство­рах в момент обработки действует механизм «ион в клетке». Ионы кальция и натрия — «тонкие», они попа­дают в клетки-полости, стабилизируются там, и в результате уменьшается число реагирующих ионов, т. е. реакция замедляется. Во время магнитной обра­ботки суспензии происходит адсорбция ионов из жидкой фазы на твердую, и кристаллизация идет быстрее.

Расскажем еще об одном типе химических реакций, которые возникают под действием магнитного поля оптимальной напряженности. Они протекают, правда, без участия воды, но упомянуть о них стоит хотя бы потому, что в их реальность тоже долго не верили. Считалось, что если реакции и идут, то лишь в очень сильных магнитных полях. Однако тщательная про­верка, выполненная в разных странах мира, показала, что такие реакции происходят и в области «оптималь­ных» индукций.

Речь идет о реакциях с участием свободных радика­лов. Свободные радикалы — это сравнительно устой­чивые «осколки» органических соединений, в которых отсутствует один атом, т. е. радикалы имеют электри­ческий заряд. Радикалы обозначают буквой R —. Для метана СН4 радикалом будет метил СН3 —, но он не­устойчив. Для этана С2Н6 радикалом является этил С2Н5 — , он тоже неустойчив. Устойчивы более крупные радикалы, в которых нескомпенсированный заряд как бы распределен между всеми остальными атомами. Устойчивость свободных радикалов относительна, че­рез некоторое время они начинают взаимодействовать. Рассмотрим реакцию с участием радикалов:

R’Li-f R2C! = LiC! — f — R’R2, где R1 — бутил C4H9 —, R2 — бензилхлорид С6Н5СІ2—.

В действительности получается несколько продуктов взаимодействия свободных радикалов: R’R ; R’R1; R2R2. Установлено, что магнитное поле с индукцией В = 0,1 Тл увеличивает на 20 % выход первого из этих продуктов. За открытие и обоснование этого явления группа советских ученых (Ю. Н. Молин, Р. 3. Сагдеев и др.) была удостоена в 1986 г. Ленинской премии.

Подобный механизм влияния магнитного поля реа­лизуется, возможно, при его воздействии на биологи­ческие объекты, ибо некоторые процессы в них проте­кают через свободные радикалы.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

Мы расстались с Остапом Бендером, когда он в поисках стульев с драгоценностями заходил в разные дома. Попал он и в квартиру, где жила Эллочка Щу­кина. Эллочка не хотела продать свой стул, и Остап ре­шил его выменять.

«…— Сейчас в Европе,— сказал он,— и в лучших домах Филадель­фии возобновили старинную моду — разливать чай через ситечко. Необычайно эффективно и очень элегантно.

Остап вынул из кармана маленькое позолоченное ситечно. —

— Хо-хо! — тихо застонала Эллочка.

Не дав ей опомниться, Остап положил ситечко на стол, взял стул и галантно раскланялся».

Ситечко давно уже применяют не только в лучших домах Филадельфии, но почти повсеместно: так чай отделяют от чаинок. Мы вправе сказать, что здесь происходит фильтрование суспензии. В химической промышленности фильтры представляют собой слож­ные агрегаты, рабочая поверхность нередко превос­ходит 100 квадратных метров, а цена — полмиллиона рублей. Еще более сложные и дорогие фильтры в цел­люлозно-бумажной промышленности. Работы по интен­сификации процессов фильтрования также ведутся во многих странах. Не последнюю роль тут играет и маг­нитная обработка.

Имеются сообщения о том, что магнитная обработка водопроводной воды увеличивает скорость ее фильтра­ции в песке и глине. Скорость фильтрации технической воды, закачиваемой в нефтяной пласт, возрастает на порядок, если ее предварительно обработать магнит­ным полем. Если для промывки осадка использовать обработанную воду, то возрастают скорость промывки и степень отмывки белой сажи и бикарбоната натрия, гидроксидов тяжелых металлов, сульфоугля, геля крем­невой кислоты, фосфогипса. Это же касается и про­мывки кинопленки. Если обрабатывать суспензию, например оксалата никеля, жидкая фаза которой пред­ставляет насыщенный раствор вещества твердой фазы, то выпадают мелкие кристаллы, а скорость фильтрации уменьшается. Если же обрабатывать суспензию угля или целлюлозы, где в жидкой фазе как будто нет ионов кристаллизующегося вещества, то фильтрование будет идти быстрее. Наконец, при обработке суспензии, в которой после этого процесс роста кристаллов может происходить еще несколько часов, последующая фильтрация идет с большей скоростью, о чем мы упо­мянули в предыдущем разделе.

При магнитной обработке промывной воды исполь­зуется описанное в разделе 4.2 свойство ускорять процесс растворения неорганических солей. Даже в таких средах, как осадки угля, песка, контакты между чаістицами часто дают кристаллизующиеся из рас­твора соли. Эти соли растворяются при промывке осадка первыми порциями промывной жидкости, в осад­ке образуются сплошные поры вместо тупиковых, и следующие порции промывной жидкости проникают сквозь слой осадка быстрее. Но быстрая промывка фильтровального осадка не всегда обеспечивает высо кое качество отмывки от примесей, которые могут застревать в тупиковых порах. Размывание тупиковых пор способствует лучшей очистке осадка. Эта мера полезна тогда, когда надо получить чистый осадок, а также и в тех случаях, когда осадок выбрасывают, а целевым продуктом является фильтрат. Тогда из­влечение даже незначительных количеств фильтрата из тупиковых пор позволяет увеличить выход полезного продукта на 0,5—1,5 % (производство фосфорной кислоты).

Магнитной обработкой суспензии мы влияем на про­цессы снятия пересыщения и кристаллизации в объеме. При наличии твердой фазы ионы осаждаются из раство­ра преимущественно на частицах твердой фазы, но при больших пересыщениях, когда новая твердая фаза воз­никает в объеме жидкой фазы, появляются мелкие кристаллы, что приводит к уменьшению скорости фильтрования. Поэтому до магнитной обработки пересыщение надо снять обычными технологическими приемами: снижением температуры, интенсивным перемешиванием. Но даже и тогда, когда ионы выса­живаются только на частицах твердой фазы, могут воз­никнуть нежелательные для фильтрования явления. Одно из таких явлений — замедление промывки фильт­ровального осадка. Обычно, чем выше скорость фильт­рования, тем выше и скорость промывки, но при исполь­зовании магнитной обработки ситуация может изме­ниться. Это произойдет тогда, когда при осаждении ионов на частицах твердой фазы поверхностный заряд частиц будет возрастать по абсолютной величине. Большой заряд создаст большие силы взаимодействия с близлежащими слоями воды, что и приведет к замед­лению промывки. Способ борьбы с этим явлением — магнитная обработка промывной жидкости. Таким образом, обрабатывать полезно несколько потоков, поступающих на фильтр,— и суспензию, и промывную воду. Вспомним, кстати, и о пользе омагничивания воды, поступающей на промывку фильтровальных тканей.

Все эти приемы применяются в химической, сахар­ной, целлюлозно-бумажной промышленности. В ряде 114 случаев очистка становится столь эффективной, что осадок даже изменяет свои эксплуатационные свой­ства, так, каучук, промытый от золы, легче пластифи­цируется. Наконец, надо упомянуть и так называемые скорые фильтры (песчаные), которые применяют на очистных сооружениях городов и поселков, и где уже много лет наряду с другими способами интенсифи­кации процесса используют и магнитную обработку воды.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

Есть немало причин, чтобы усомниться, действитель­но ли вода, прошедшая через магнитное поле невы­сокой напряженности, изменяет свои свойства. Сомне­ния возникают из-за трудностей, связанных с объяс­нением феномена. Ведь поток чистой воды, как было показано в разделе 1.5, на магнит практически не реагирует. Вот если бы вода была ржавая, с частицами ферромагнитных оксидов железа, то на них, очевидно, действовала бы сила Гуи. В этом случае взвешенные частицы оксидов приобрели бы дополнительный им­пульс, в движение вовлекались бы соседние слои жидкости — вот тогда мы вправе были бы ожидать изменений в системе.

Даже чистая с виду вода может содержать малое количество ферромагнитных частиц, например вода из водопровода. И в этом случае изменения (пусть и малые) представлялись бы обоснованными. Но нас уверяют, что изменению подвержена и кислая вода, где ферромагнитных частиц нет,— железо присутствует там только в виде ионов. И даже в дистиллированной

Воде, говорят, обнаруживается действие магнитного поля, хотя сила Гуи здесь равна нулю.

Быть может, мы сталкиваемся с какими-то новыми, еще неведомыми силами? Или тут проявляются такие свойства воды, с которыми мы ранее еще не встре­чались? Не пора ли в современные теории воды вно­сить исправления?

Разумеется, прежде чем подвергать ревизии сложив­шиеся теории, надо перепроверить факты о якобы имевших место изменениях свойств воды и растворов. И тут — ах, какой пассаж! — далеко не всегда резуль­таты опытов удавалось повторить. Сторонники и про­тивники магнитной обработки вступали в безрезультат­ный спор.

— Вы занимаетесь химерой! — заявляли против­ники.

— Не полностью воспроизведены условия опыта,— утверждали сторонники.— Магнитный аппарат такой же, но скорость протекания жидкости через аппарат была другой.

Изменили скорость жидкости, а эффекта снова не получили.

— Тут совсем другой состав воды, в нем есть по­сторонние ионы.

Очистили воду от посторонних ионов. Эффекта по-прежнему нет.

— Температура опытов гораздо выше, на целых пять градусов.

Уменьшили температуру. Эффекта все равно нет.

— Сейчас апрель, а результат, которого мы доби­ваемся, был получен в октябре,— изыскивали доводы сторонники.

— Довольно! Не морочьте голову! — в сердцах отвечали противники.— Омагниченной воды нет и быть не может.

К спору подключились некоторые физики-теоретики. Они активно выступали (да и сейчас иногда выска­зываются) против идеи магнитной обработки, обвиняя ее сторонников в трюкачестве, фокусничестве, бессо­вестном обмане легковерных. В публичных выступле­ниях отдельных сотрудников академических институтов рядом со словами «магнитная обработка воды» еще недавно обязательно соседствовали такие неакадеми­ческие выражения, как мошенничество, шарлатанство и т. п. В связи с этим уместно привести отрывок из воспоминаний о вице-президенте Академии наук Б. П. Константинове его бывшего ученика А. И. Его­рова.

«…Зима 1966 г. Работаю в лаборатории. Телефонный звонок, голос секретаря: «С Вами будет говорить Борис Павлович». И сразу же: «Антон Ильич, у вас в филиале вода жесткая?» — «Жесткая, из артезианских скважин». — «Я завтра буду в Гатчине и хочу провести магнитную обработку воды. Мне нужен электромагнит, две плитки и колбы…»

На следующий день Борис Павлович как всегда быстро вошел в лабораторию, осмотрел электромагнит, попросил включить его катушки навстречу друг другу. В две колбы налили кристально чистой воды, одну колбу покрутили над полюсами магнита, другую — в стороне от него. Поставили колбы на плитки и стали ждать, что будет. В ту пору я очень скептически относился к идее магнитной обработки воды — она казалась мне типичным околонаучным шарлатанством. Гатчинскую воду я кипятил много раз и знал, что на стенках колб должен выделяться беловатый слой накипи. Но по мере того, как колбы нагревались, начала проявляться разница между ними: в одной — накипь стала привычно нарастать на стенках, в другой — обработанной магнитным полем — вода стала мутно-белой: вся накипь выделилась в объеме жидкости.

Воду вылили, колбы ополоснули соляной кислотой, тщательно вымыли и снова залили водой. Поменяли их местами, одну покрутили в магнитном поле и стали нагревать — и снова тот же результат: предварительная обработка магнитным полем вызывает выпадение накипи в виде шлама. Начали эксперимент в третий раз, но теперь Борис Павлович влил часть обработанной воды в колбу с необрабо­танной и поставил ее на плитку. Четко врезалась в память вся обстановка этого мгновения. Темнеющий лес за окном, теплый уют лаборатории, ярко освещенный вытяжной шкаф и мы, напряжен­но ожидающие, что будет с водой. Вот колба запотела, закипели стекающие капли, пошли из толщи воды пузырьки воздуха, теплее, теплее, вода начала закипать, и вот стала мутнеть — шлам начал образовываться в толще воды.

Борис Павлович тут же попрощался с нами и быстро ушел, а мне потом пришлось не раз убеждать скептиков, что в воде, движущейся через неоднородное магнитное поле, возникают долгоживущие центры кристаллизации, и что магнитной обработке можно подвергать не всю воду, а только ее часть.»

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

В этом разделе пойдет речь о вполне заурядных, ничем не примечательных химических реакциях. Од­нако в заголовке стоит слово «почти», значит, чем-то они все-таки отличаются. Да, это те реакции, скорость которых можно изменить, если использовать магнитную обработку.

Вот одна из таких реакций — гидратация силиката кальция:

3Ca0-Si02-f 3H20 = 2Ca0.Si02-2H20 + Ca(0Hh.(I)

Силикат кальция — основной компонент одного из видов цемента. Цемент — это сухой порошок, из него, если осуществить реакцию (I), можно изготовить прочные монолитные изделия. При смешении цемента с водой (затворении) в смесь часто вводят песок, гравий, другие наполнители — когда такая смесь затвердевает, она называется бетоном. В современном мире бетон применяют в огромных масштабах: из него строят жилые дома, промышленные объекты, взлетно — посадочные полосы, причалы," военные сооружения. Во всех странах мира широко ведутся работы, направ­ленные на улучшение всех стадий процесса получения изделий из бетона.

Химиков интересует стадия, связанная с отвержде­нием цемента, т. е. то, что отображено реакцией (1). Установлено, что она протекает не сразу, а через не­сколько промежуточных фаз. Первая представляет собой растворение оксидов, причем оксид кальция

Почти обычные реакции

.2

7 14 21 28 Время, сут

/

Рис. 13. Прочность образцов бетона из цемента в зависи­мости от магнитной обра-

Ботки:

/ — без обработки; 2 — об­работка сразу после затво — рения; 3 — обработка через 2 часа после затворения

Образует раствор электролита, а оксид кремния обра­зует желеобразную систему — гель кремневой кислоты. Во второй фазе происходит кристаллизация из рас­твора, в твердую фазу переходят ионы и из раствора, и из геля. Но так как гель обладает разветвленной про­странственной структурой, похожей на структуру поли­мера, то фаза оказывается очень протяженной во времени. Гель полностью расходуется только через год—полтора. Остатки геля, таким образом, длитель­ное время находятся в межкристаллических проме­жутках, во всяком случае в течение первого месяца расходуется не более 80 % геля. Поэтому прочность изделий из цемента (бетона) растет с течением времени (рис. 13).

Как видно из рисунка, магнитную обработку целе­сообразно осуществлять на обеих фазах. Мы уже знаем: вода, прошедшая через магнитный аппарат, обладает способностью быстрее растворять неоргани­ческие вещества. Значит, первая фаза будет проходить и завершаться быстрее. Опытами установлено, что при использовании магнитоактивированной воды для затво­рения цемента образуется больше мелких кристаллов, тогда как при затворении цемента обычной водой образуется больше крупных кристаллов. Мелкие крис­таллы имеют больше точек контакта, где они могут срастись, и это обеспечивает большую прочность расту­щего кристаллического каркаса. Вот почему магнитная обработка воды для затворения приводит к увеличе­нию прочности получающихся готовых изделий.

Но формирование более мелких кристаллов в це­ментной массе важно и с другой точки зрения. У строи­
телей существует специальный термин — удобоуклады — ваемость, т. е. способность цементного теста [2] легко заполнять формы и не создавать воздушных пробок. Именно благодаря мелким кристаллам масса приобре­тает большую пластичность, лучшую растекаемость. Вот еще один довод в пользу предварительной обработки воды для затворения.

Магнитная обработка на второй фазе, т. е. обра­ботка затворенной массы, также дает повышение прочности готовых изделий. При этом происходит снятие пересыщения. Ионы, участвующие в формиро^ вании кристаллогидрата, адсорбируются на поверхно­сти растущих кристаллов и встраиваются в кристал­лическую решетку. Чтобы эффект был максимальным, обработку надо производить после завершения первой фазы и в начале второй, т. е. спустя несколько часов после затворения. Очевидно, обрабатывать массу, когда процесс кристаллизации в основном завершен, не имеет смысла.

Рассмотрим теперь другую реакцию, также связан­ную с отверждением:

CaS04 • 0,5НгО + 1,5Н20 = CaS04 — 2НгО. (11)

Образующийся по этой реакции из полугидрата сульфата кальция двуводный сульфат кальция (гипс) в затвердевшем состоянии обладает высокой устой­чивостью формы. Сама реакция протекает быстро — за несколько минут. С реакцией (II) мы сталкиваемся в клинике, когда зубной врач снимает слепок или хи­рург накладывает гипсовую повязку. Менее известно, что изделия из гипса применяют в строительстве, из них делают стеновые панели, перегородки, плитку.

Были проведены опыты с так называемым гипсовым вяжущим, основным компонентом которого является полугидрат сульфата кальция. Оказалось, что затворе — ние гипсового вяжущего магнитоактивированной водой приводит к повышению прочности гипсовых изделий на 30—40 %, т. е. почти так же, как и изделий из бетона. В этом нет ничего странного, ибо процесс по реак­ции (II) в общих чертах сходен с процессом по реак­ции (I). Значит, и эффект магнитной обработки также должен быть положительным.

Коль скоро воздействие обработанной водой произ. водится на первой фазе процесса — растворении, а скорость растворения может как увеличиваться, так и уменьшаться, то мы вправе ожидать появления не толь­ко положительного, но и отрицательного эффекта маг­нитной обработки. Это, действительно, имеет место; если в обрабатываемой воде много «толстых» ионов — сульфатов, фосфатов.

Кроме цемента и гипса, магнитная обработка уско­ряет твердение других вяжущих материалов — глины, жидкого стекла. В суспензиях глин, полученных на магнитоактивированной воде, выявлена (с помощью электронной микроскопии) более совершенная кри­сталлизационная структура. Поэтому прочностные и некоторые другие характеристики готовых изделий (кирпича, керамики) также отличаются: прочность и плотность становятся выше, пористость и водопогло — щение — меньше.

Окончательное твердение этих вяжущих материалов происходит только в условиях высоких (порядка 1000 °С) температур. На стадию высокотемпературного обжига подают образцы, прошедшие стадию формова­ния, т. е. обладающие устойчивостью формы. Для того чтобы суспензия (например, глина—вода) приобрела какую-то устойчивую форму, в ней должны произойти процессы структурообразования. Именно на протека­ние этих процессов и влияет омагниченная вода. Пола­гают, что положительный эффект магнитной обработ­ки здесь связан с возрастанием поверхностного натя­жения воды. С одной стороны, это вызывает уменьше­ние смачиваемости частиц твердой фазы, т. е. уменьше­ние числа молекул Н20 вблизи каждой частицы, что должно способствовать росту числа контактов между ними. С другой стороны, более высокое поверхностное натяжение приводит к увеличению сил стягивания частиц в объеме, что должно способствовать упрочне­нию этих контактов. В итоге возникает коагуляцион — ная структура в пастообразном образце, поступающем на обжиг. Эта структура сохраняется и закрепляется в обожженном изделии.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

В главе 2 мы неоднократно говорили о том, что неко­торые эффекты магнитной обработки кажутся столь странными, будто получены в результате фокусов. Затем мы постепенно стали объяснять эти эффекты, можно сказать, раскрывать секреты фокусов. О рас­крытых и нераскрытых секретах пойдет речь в этом разделе.

На одном из заводов, производящих синтетиче­ские моющие средства, опытным путем было установ­лено, что технологические растворы, обработанные маг­нитным полем, лучше распыляются. Значит, можно увеличить производительность процесса или снизить расход топлива. Причина лучшего распыла оказалась в том, что уменьшилась вязкость раствора, а также, вероятно, поверхностное натяжение. Обычно вязкость растворов электролитов после магнитной обработки в области оптимальных индукций возрастает, но в моющих средствах есть органические добавки (ПАВ), для которых, как мы уже знаем, эффект меняет знак. По-видимому, распыление в сушилках органических продуктов и в других случаях можно улучшить, если применять магнитное, поле.

В промышленных условиях было достигнуто и умень­шение слеживаемости удобрений: аммиачной се­литры — в 1,5 раза, нитроаммофоски — в 2 раза. Это весьма важно, ибо удобрения, если не заботиться об условиях их хранения, могут слеживаться, т. е. превращаться в сплошной и очень твердый монолит. Раздробить такую глыбу очень непросто. Причиной замедления процесса слеживаемости этих неоргани­ческих солей стало, очевидчо, возрастание поверхност — ного натяжения и замедление процессов, идущих на поверхностях контактов частиц.

Лабораторные опыты показывают, что магнито — активированный этиленгликоль поднимается в капил­лярной трубке до более высокой метки, чем обычный. Значит, поверхностное натяжение этой органической жидкости уменьшилось (эта жидкость плохо смачи­вает стекло). Поэтому можно предполагать, что про­питка капиллярных сред (например, ткани) другими органическими жидкостями может быть ускорена, что и было сделано в производстве электротехнических изделий: омагниченный лак лучше пропитывает бумагу. В воде (и в водных растворах электролитов), напротив, поверхностное натяжение возрастает, значит, магнитное поле может интенсифицировать не пропитку водой, а обратный процесс — сушку. И вот уже появляются первые сообщения об успешных опытах по ускоре­нию сушки льняной пряжи.

При магнитной обработке лакокрасочных материа­лов — суспензий красителя в органическом раствори­теле — уменьшается поверхностное натяжение жидкой фазы. Поэтому возрастает смачиваемость пигментов, улучшается накрашиваемость тканей. С другой сто­роны, паста красителя быстрее рассыпается, что позво­ляет повысить производительность диспергирующего оборудования.

Во всех рассмотренных выше случаях мы можем объяснить механизм действия магнитного поля, про­гнозировать возможный успех или предостеречь от неудачи.

Значительно сложнее с другими примерами. Из­вестна химическая реакция гашения извести:

Са0 + Н20 = Са(0Н)2.

С «омагниченной» водой эта реакция идет в 1,3 раза быстрее. Почему? За счет увеличения скорости раство­рения? Или вследствие появления большого числа центров кристаллизации гидроксида?

Опытами установлено, что кинопленка проявляется быстрее в проявляющем растворе на воде, прошедшей магнитную обработку. При проявлении пленки идет, например,’ реакция
и атомарный бром соединяется с водородом проявляю­щего вещества. Предполагают, что магнитная обра­ботка влияет на скорость диффузии компонентов проявителя в желатиновом слое, нанесенном на плен­ку. Но почему она ускоряется?

В заключение перечислим несколько эффектов, объяснение которых пока что затруднительно (если, конечно, сами эффекты достоверны). Ускорение хими­ческой реакции полимеризации (смолы ЭДТ-10, акри — лонитрила). Ускорение химической реакции окисления иодистоводородной кислоты пероксидом водорода. Бо­лее медленное окисление органических веществ (стеа­риновой кислоты, изопропилового спирта) и более быстрое — пирита. Ускорение испарения макрокапил — лярной влаги и замедление испарения микрокапил­лярной влаги из силикагеля. Изменение скорости коррозии некоторых марок сталей. Изменение сорбци — онной емкости катионитов и анионитов, геля гидро — ксида железа, а также сорбции электролитов на тканях. Трудно объяснить и снижение расхода мотор­ных топлив. Многие из этих процессов идут не в воде, а в других жидкостях, но мы все равно упоминаем их здесь, потому что их связь с процессом магнитной обработки еще ждет исследования.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты
20.06.2012 | Автор:

В приведенном выше отрывке странное для неспе­циалиста впечатление оставляет описание техники эксперимента: «одну колбу покрутили над полюсами магнита…» Свойства «кристально чистой» воды чудес­ным образом изменились только потому, что колбу слегка «покрутили» над магнитом! Действительно, похоже на фокус. Хотя академик Константинов это фокусом не считал: трижды выполнив нужную про­цедуру и трижды получив требуемый результат, он этим результатом вполне удовлетворился.

«Покрутить» колбу над полюсами магнита означало совершить пересечение водой в колбе магнитных сило­вых линий. Если скорость такого пересечения v, то на каждый ион в растворе действует сила Лоренца:

F2 = q[Bv], (3)

Где q —заряд иона.

Поскольку нам впоследствии придется неоднократно иметь дело с силой Лоренца, напомним, как определяют направление вектора Существует так называемое правило левой руки. Надо расположить левую руку так, чтобы магнитные силовые линии (от северного полюса к южному) входили в ладонь, а направление вытя­нутых сложенных пальцев показывало путь движения положительного заряда. Тогда отставленный большой палец покажет направление силы /у Для отрицатель­ного заряда, очевидно, направление F2 будет противо­положным.

Так как сила Лоренца всегда направлена перпен­дикулярно вектору скорости движущейся частицы, то эта сила не создает работы, не изменяет энергии частицы. Первоначальная скорость частицы остается неизменной по абсолютной величине. Поэтому непо­нятно, как такая сила вообще может что-то изменить в жидкости. Все-таки похоже на фокус…

Посмотрим, как устроен простейший современный магнитный аппарат (рис. 6). По трубе / протекает жидкость. Вне трубы расположены магниты 2 и 3. Независимо от того, является ли поле этих магнитов

Техника фокуса

Рис. 6. Принцип действия простейшего магнитного аппарата

Переменным или постоянным, каждый элемент потока жидкости будет пересекать силовые линии обоих магнитов, т. е. для него внешнее поле будет перемен­ным во времени. А так как полюса магнита 3 распо­лагаются противоположно полюсам магнита 2, то для рассматриваемого элемента поле окажется также и пе­ременным в пространстве. (Знакопеременность полюсов магнитов называется реверсом.)

На рисунке внешние магниты 2 и 3 изображены одинаковыми, густота магнитных силовых линий между ними также одинакова, а линии симметричны. Кроме того, предполагается, что магниты 2 и 3 установлены столь далеко друг от друга, что между ними нет магнит­ных силовых линий. В аппаратах для промышлен­ного использования картина магнитных силовых линий гораздо сложнее.

Рассмотренный аппарат очень прост по конструкции и исполнению. Для жидкости, протекающей по трубо­проводу, как будто не создано никаких изменений: она течет в том же сосуде, с той же скоростью. Лишь с внешней стороны трубы возникло нечто эфемерное — магнитное поле. Да, стрелка компаса это уловит, но жидкость? В трубе? Как-то сомнительно…

В магнитных аппаратах более сложных конструкций схема, изображенная иа рис. 6, как правило, реали­зуется в качестве одного из рабочих элементов. В про­мышленных аппаратах используют как постоянные магниты, так и электромагниты.

Промышленные аппараты могут подвергать обра­ботке по несколько тысяч кубометров воды в час. Их электромагниты потребляют десятки киловатт — часов электроэнергии. Представляется вполне естест­венным, что эти киловатты пока еще неясным для нас образом изменяют свойства обрабатываемой жидкости. Но при эксплуатации постоянных магнитов не требуется применять какую-либо энергию. Постоянные магниты сохраняют свои свойства практически неизменными в течение многих лет. За это время по нашей трубе про­течет море воды. Какие же причины могут привести к изменению свойств этого моря? Откуда черпается энергия? Ситуация подозрительно напоминает пресло­вутый вечный двигатель… Может быть, это все-таки мистификация, фокус?

2.3. Что течет по трубе!

Итак, мы имеем систему, состоящую из трубы, распо­ложенной во внешнем магнитном поле. По трубе течет жидкость, в которой, говорят, изменяются некоторые свойства. Какие именно свойства и как они изменяются, мы рассмотрим чуть позже, а сейчас поговорим о том, что же должно протекать по нашей трубе, чтобы наблю­дался эффект магнитной обработки, т. е. обещанное изменение свойств жидкости.

Хорошо, если протекает обычная водопроводная вода — тогда этот эффект заметен даже в не очень сильных магнитных полях, например с индукцией В = 0,1 Тл. Если вода дистиллированная, то эффект значительно меньше, но его все же можно наблюдать в более сильных полях, например с 5 = 0,5 Тл. Бидистил — лят обычно эффектов не дает, если не увеличить магнитную индукцию до В = 1,5 Тл, а это технически довольно трудно осуществить. В трижды дистиллиро­ванной воде как будто еще никто не наблюдал никаких эффектов.

Мы вправе думать, что все дело в примесях, напри­мер в наличии ионов растворенных солей. Действи­тельно, при повышении концентрации кислот, неоргани­ческих солей, вообще электролитов все эффекты возра­стают, правда, не безгранично. Если рассматривать простые системы вода—соль или вода—кислота, то предельной концентрацией является 1—2 кмоль/м3. Выше этих достаточно высоких концентраций эффект уменьшается и может даже изменить знак, то есть вместо ожидаемого возрастания какой-либо величины она уменьшается. Естественно, существует область кон­центраций, когда эффект не заметен вовсе либо очень мал. Эти случаи отсутствия эффекта бывают довольно часто. Надо также учесть, что у каждого индивидуаль­ного вещества своя предельная концентрация. Изменим несколько концентрацию — и эффект будет наблю­даться.

Мы уже говорили о том, что вода (раствор) должна протекать по трубе, в неподвижной жидкости изменения будут наблюдаться только в переменном во времени и (или) по направлению магнитном поле. Линейная ско­рость протекания жидкости имеет немаловажное значение. Наибольшие эффекты наблюдаются при ско­ростях порядка 0,5—2,5 м/с, при существенно меньших и больших скоростях эффекты, как правило, малы. Оптимальной должна быть не только скорость потока v, но и индукция В, оптимальный диапазон значений В = 0,07-^0,20 Тл, при больших и меньших В эффекты, как правило, малы.

Анализ многочисленных экспериментальных данных показал, что не столько сами по себе значения v или В, сколько их произведение Bv. Таким образом, малая скорость потока жидкости — это не всегда плохо. Даже при и = 5 см/с можно наблюдать эффекты, если индукцию увеличить в 10 раз. Оптимальное значение Bv закладывается в конструкцию современ­ных промышленных аппаратов.

Все сказанное относится к магнитной обработке технических растворов электролитов. Магнитные аппа­раты изготавливают также для нужд сельского хозяй­ства и медицины, в частности для обработки живых систем. В таких аппаратах оптимальная индукция обычно не выше 0,03 Тл (подробнее об этом будет сказано в разделе 5.8).

Вернемся к неорганической материи. Оказывается, большая скорость потока жидкости через трубу — тоже не всегда плохо. Если благодаря большой скорости поток становится турбулентным (с завихре­ниями), то эффект возрастает. Можно создать турбу­лентность, обрабатывая жидкость ультразвуковым по­лем. Тогда в ней возникают пульсирующие газовые пузыри. Это явление называется кавитацией. Одновре­менная обработка потока магнитным и ультразвуковым полем создает эффект больший, чем сумма эффектов от каждого вида воздействий порознь. Этот результат можно было бы записать немыслимым равенством:

3 + 4 = 9,

Где 3 — численное значение эффекта от действия только ойного магнитного поля, 4 — то же от действия только Одного ультразвукового поля, 9 — суммарный эффект одновременного действия двух полей.

Если кавитацию создавать до магнитной обработки, то эффект также усиливается, т. е. станет больше, чем от каждого поля порознь. Но если кавитацию создавать после магнитной обработки, то эффект ослабляется, станет меньшим, чем от одного поля. Этот результат можно записать так:

3 + 4 = 2.

Глядя на такую арифметику, читатель вправе вос­кликнуть:

— Это же надувательство!.. Или сумасшествие?..

Вообще-то, в этой книге мы ведем речь о воде и водных растворах. Но в данном разделе несколько раз применили более широкое понятие: жидкость. Это не случайно. До недавнего времени считалось, что эффекты магнитной обработки присущи только воде. В восьмидесятых годах стали появляться сообщения, что аналогичные эффекты наблюдаются также при магнитной обработке органических жидкостей, напри­мер нефти. Но что может быть общего между органи­ческой и неорганической жидкостями? Что ни говорите, а трудно, право, избавиться от ощущения, что все эффекты магнитной обработки связаны с мистифи­кацией.

Категория: ОМАГНИЧЕННАЯ ВОДА  | Комментарии закрыты